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ABSTRACT

The surprise attacks of September 11, 2001, generated a need for more
sophisticated models for the detection of potential threats. A prerequisite of such models
is the ability to simulate reduced human performance redlistically. Realistic human
performance should include the very human traits of imperfect perception, imperfect
cognitive processing, and imperfect behavior. Imperfect or lowered performance caused
by lack of information, lack of perception, or lack of cognitive resources, is termed
“reduced human performance” and takes a variety of forms, which ssimulated entities

must portray, if they areto be redlistic.

An unexpected event is called a surprise, and surprises are more likely to occur
when performance is reduced. Thus surprises may be seen as a by-product of reduced
human performance. A sophisticated cognitive model should generate surprises and
unexpected outcomes as part of its portraya of complex problem domains.

Current cognitive models not only lack flexibility and realism, they fail to model
individual behavior and reduced performance. This research analyzes current cognitive
theories (namely, symbolism, connectionism, and dynamicism). We then hypothesi ze that
reduced human performance can be best modeled as a complex adaptive system. The
resulting multi-agent model Reduced Human Performance Model (RHPM) implements
reactive agents (following a notion of Dr. Chris Wicken's Multiple Resource Model)
competing for cognitive resources. Lack of resources is used to trigger the simulation of
imperfect perception and imperfect cognition.

The developed multi-agent system generates adaptive and emergent behavior. The
simulation system is calibrated with human experimental data in scenarios involving
vigilance decrement, wherein vigilance is decreased during the first 30 minutes of a
screening task. RHPM is validated against previous unknown vigilance task scenarios.

RHPM generates realistic reduced human performance with a new cognitive
modeling hypothesis. Its use for computer generated forces (i.e. radar screen operator)

improves the realism of simulation systems by adding human like reduced performance.



This research’s main contribution is the development of a well suited tool to
mediate between vigilance theories such as signal detection theory and experimental data.

It generates insights creating likely hypotheses to improve the theories.
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INTRODUCTION

A. THESISSTATEMENT

Reduced human performance resulting from a sustained attention task can be
modeled as a complex adaptive system (CAS) and the resulting computational model can

be shown to approximate empirical human performance data under similar conditions.
B. MOTIVATION

The ruling to kill the Americans and their allies—civilians and military—
is an individua duty for every Muslim who can do it in any country in
which it is possible to do it, in order to liberate the a-Agsa Mosque and
the holy mosque from their grip, and in order for their armies to move out
of all the lands of 1slam, defeated and unable to threaten any Muslim. This
is in accordance with the words of Almighty God, "and fight the pagans
all together as they fight you all together,” and "fight them until there is no
more tumult or oppression, and there prevail justice and faith in God.”
(Osama Bin Laden, Text of Fatwah Urging Jhad Against Americans.
Published in Al-Quds a-'Arabi on February 23, 1998)

The motivation for thiswork is steered by the attacks of September 11, 2001. Our

research focus is amed to support the war against terrorism. We hope to simulate
potential outcomes and identify blind spots, thereby helping to prevent terrorist acts.
Previous simulation systems have not been able to predict unlikely, but very dangerous,
terrorist actions. Because the September 11 attacks came as a surprise, we focus our

research on the unexpected, with questions such as:
How can we model surprises?
How can we categorize surprises?

What factors and kinds of performance reductions lead to blind spots?

We claim that by employing composite-agent technology with a new cognitive
model based on complex adaptive systems theory, we can achieve greater, unbiased
insights into problems of human performance. Another expected improvement is implicit
in the reality that complex adaptive systems produce emergent behavior that is often
Synonymous with surprise.



John Holland, afounder of CAS theory, said:

| just love these things where the situation unfolds and | say,” Gee whiz!
Did that really come from these assumptions!? Because if | do it right, if
the underlying rules of evolution of the themes are in control and not me,
then I'll be surprised. And if I'm not surprised, then | am not very happy,
because I know I’ve built everything in from the start. (Waldrop 1992,
p.152).

The next section explains the background and shows a possible path towards

developing a new cognitive model.
C. PROBLEM STATEMENT

Surprise, when it happens to a government, is likely to be a complicated,
diffuse, bureaucratic thing. It includes neglect of responsibility so poorly
defined or so ambiguously delegated that action gets lost. It includes gaps
in intelligence, but aso intelligence that, like a string of pearls too
precious to wear, is too sensitive to give to those who need it. It includes
the dlarm that fails to work, but also the alarm that has gone so often that it
has been disconnected. It includes the unalert watchman, but also the one
who knows he'll be chewed out by his superior if he gets higher authority
out of bed. It includes the mntingencies that occur to no one, but also
those that everybody assumes somebody else is taking care of. It includes
straightforward procrastination, but also decisions protracted by internal
disagreement. It includes, in addition, the inability of individual human
beings to rise to the occasion until they are sure it is the occasion - which
is usualy too late. (Unlike movies, real life provides no musica
background to tip us off to the climax). Finally at Pearl Harbor, surprise
may include some measure of genuine novelty introduced by the enemy,
and possibly some sheer bad luck.

The results, at Pearl Harbor, were sudden, concentrated, and dramatic. The
failure, however, was cumulative, widespread, and rather drearily familiar.
This is why surprise, when it happens to a government, cannot be
described just in terms of startled people. Whether at Pearl Harbor or at
the Berlin Wall, surprise is everything in a government's (or in an
aliance's) failure to anticipate effectively.

(Schelling 1962, p. 1)

The attacks of September 11, 2001, showed not for the first time in Western
history, a need for threat-analysis ssmulation models that, unlike current models, are

capable of generating or revealing surprises, unintended consequences, and blind spots
(Smith 2002).



Israel had suffered a surprise attack in 1973. Egypt and Syrian forces attacked a
somewhat ill-prepared Israeli defense force. Intense retrospection led to the conclusion
that there was no single cause for the victim’s surprise. Chorev concluded that

Israel deceived itself: the adherence to the “conception”, the faith in its
military deterrence power, the unwillingness to believe that the Arabs
would take so great risks and the “wishful thinking” al of these, rather
than deception, contributed to its crucial surprise.

Chorev mentioned three safeguards to ward off surprise attacks:

1. Increase awareness of limitations- to the nature of judgmental biases and
the limitations of the intelligence process,
2. Improving the formation of hypotheses —in order to increase the perceived

likelihood of alternative interpretations and scenarios that may sensitize
analysts and decision makers to discrepant information;

3. Improving information processing — especialy by using quantitative and
empirical methods to facilitate the information process.(Chorev 1996,
p.23)

Different types of simulation models, taking these safeguards into account, are
needed to support analysts evaluating potential threats to individuals, organizations and
even societies. One common technique in intelligence analysis use is “backward
thinking”, in which the analyst envisions an outcome and traces how this outcome might
have become possible (Heuer 1999). A model that generates potential outcomes or
hypotheses and provides an event trace would be an invaluable tool. To provide a benefit,
this model has to generate outcomes that surprise the analyst and further his critical
thinking. To find surprise in a specific context, two kinds of conditions must be model ed:

Logca conditions that determine whether the surprising action or
outcome is physically possible, and therefore credible.

Subjective conditions:

o] The target must have a weakness he/she was ignorant of .

o] The opportunist must be motivated in such a way as to cause him

to discover the weakness and exploit it.



Currently there are no cognitive models that accommodate subjective conditions.
The National Research Council report on modeling human and organizational behavior
states:

Even the best of them [cognitive models] assume ideal human behavior
according to doctrine that will be carried out literally, and rarely take
account of the vagaries of human performance capacities (Pew and Mavor
1998, p.34).

Current cognitive models have several identified weaknesses. The council’ s report
and other sources describe those in detail (Pew and Mavor 1998; Ritter, Shadbolt et al.
1999). A magjor criticism to rule-based approaches, for example, is that these systems are

mechanistic, brittle, and unable to cope with unforeseen events.

Another magjor weakness is stated in a psychological bulletin:

Cognitive Psychology has developed as a domain in which basic rules of
human information processing are investigated. This kind of approach
often neglects the existence and importance of individual differences. At
best, such differences are regarded as troublesome though not much
interesting source of variation of results observed in various cognitive
tasks. The psychology of individual differences, on the other hand, has
developed as a domain in which differentiation of human traits as well as
intercorrelation between them, are of basic interest. This approach usually
neglects cognitive processes underlying human traits, although one can
argue that traits are just behaviora expressions of elementary cognitive
and physiological processes. It seems that combination of the processual
approach, typica of experimental cognitive psychology, with the
correlational approach, typical of the psychology of individual differences,
is of utmost necessity. Only through such combination isit likely to obtain
valid theoretical models, which would be able to link variables from the
domain of temperament, personality, and cognition. (Nécka and Szymura
2001, p.159).

From our perspective there are two main weaknesses to overcome to meet the
requirements for threat-analysis simulation models:

1) Current cognitive models generate neither adaptation! nor emergent
behavior?, which are essential features of individual human behavior

modeling.

1 Adaptation is defined as a process whereby an organism fits itself to its environment( after : Holland,
Holland, 1995).
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2) Current cognitive models do not model individua human-performance
reduction, which leads to homogenous, predictable, and unrealistic model
behavior.

We hypothesize that we can overcome these weaknesses by using complex
adaptive systems theory as the foundation for a new cognitive architecture. The expected
advantages are the simulation of autonomous, emergent, flexible, self-explaining,

adaptive, dynamic and robust behaviors.

Modeling surprises and blind spots requires an indirect approachs that helps us
explore a wider problem domain. Classical direct approaches* often have a biased
confined area (box) of analyst expectations. The boundaries of direct approaches are
predetermined by the modeler and represent the degrees of freedom of the model. This
type of approach has been used very successfully for linear problem domains. Non-linear
problem domains often require heuristics in order to define the needed constraints. A
basic property of CAS isits nonlinearity (Holland 1995). Indirect modeling approaches,
like multi agent system (MAS) modeling, search the entire domain, constrained by
physical boundaries only.

D. THE COMPLEX ADAPTIVE SYSTEM HYPOTHESIS (CASH)

Now we come to the core hypothesis of this research:

Reduced human performance can be modeled as a complex adaptive system.

Murray Gell-Mann daimed in 1994 that “Each of us humans functions in many
different ways as a complex adaptive system” (Gell-Mann 1994). There have been a
number of researchers (e.g., Melanie Mitchell of Santa Fe Institute, NM, and John
Sokolowski of Old Dominion University, VA) working implicitly under this assumption.

2 Emergent behavior is abehavior on ahigher level that is generated by interactions and behaviors on a
lower level. Often it isreferred to as micro decisions lead to macro behavior. (Schelling, T. C. 1978).

3 An indirect approach is an approach where there is no pre-programmed path to a solution.
Autonomous software agents determine their path within physical boundaries.

4 A direct approach is an approach where the modeler conceives an agorithmic solution to a problem
and implements that solution into software.
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Manifestly the hypothesis is not a new insight, but the formulation of what has hitherto
been implied. However, the hypothesis has not yet been established in cognitive sciences.

Holland defined a CAS as a nonlinear dynamical system, composed of many
interacting, hierarchically organized agents, continuously adapting to a changing
environment. He described a variety of complex adaptive systems, all of which display
the central enigma of coherence under change. Holland claims that CAS behavior is
determined by general principles and that CAS typically have lever points.®> He describes
key properties (aggregation, nonlinearity, flows, diversity) and mechanisms (tags,
internal models, building blocks) central to understanding CAS (Holland 1995; Holland
1998). We will describe details on complex adaptive systems theory later on.

The ultimate goal for a cognitive model is an “integrative architecture that
subsumes al or most of the contributors to human performance capacities and
limitations” (Pew and Mavor 1998). It appears to be widely accepted that human
behavior can be modeled with a stage model of information processing. Broadbent
generated the first ideas with his single resource theory. Kahnemann®é was a major
proponent of the single-resource model and showed that the cognitive capacity varies
depending on arousal level and other variables (Wickens 1992). However, research in
multitasking showed convincing evidence against a single-source theory. Wickens
expanded the model to include then-current insights of psychology and social sciences.

He also suggested awidely acknowledged model for the human information process.

S Lever points are points wherein a small change in the input amount can lead to a large directed
change. The immune system is a good example of this type of behavior. Upon introduction of a small
amount of vaccine, the immune system adapts rapidly to develop immunity.

6 1n 2002, K ahnemann was awarded the Nobel Prize for hiswork in economics.
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Figurel. Stage Model of Human Information Processing (From :Wickens,1992)

Figure 1 shows the different stages for the human information processing. A
stimulus is stored in the short-term sensory store (STSS) for a few seconds (visual
stimulus about 1 second, auditory stimulus about 5 sec; echoic memory). If it is not
perceived within this timeframe, it is not a perception. Perceptions are sometimes
matched with patterns, likely stored in long-term memory’. Thisis the encoding stage.

Next, during the central processing stage, the perception is forwarded to the
decision- and response-selection system, which uses the working memory to deternine
whether an action should be initiated. The last stage is the response-execution stage,
which leads either to a vocal or manual response to the perceived stimuli (Wickens
1992).

(Pew and Mavor 1998) modified this model dightly to show the elements that
should be included in an integrative architecture. They left out the STSS and connected
the perception to long-term memory via working memory. However, amajor alteration to

7 One example for a pattern is the recognition of the letter “a’. Long term memory provides different
typesof ds(A,aA...)
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the original stage model is the fact that Pew did not show the attentive resources that are
central to modeling reduced performance (Pew and Mavor 1998).

Thus, we will use the original stage model in order to show that all the elements
of the stage model can be modeled with CAS. The nonlinear interactions between the
attentive resources have different effects on the information processing stages, which
eventually result in interesting humantlike emergent behavior.

We define reduced human performance as performance degradation over time.
The reduction is sometimes quantifiable in measures for speed and/or accuracy. Vigilance
decrement is an excellent example of performance degradation; our inability to sustain
attention for a long time is well known to all. Attention depends very much on available
cognitive resources, and sustained attention is a high-workload task (Wickens 2002).

Other factors besides time can degrade performance. Stress, heat, seep
deprivation, injury, and loss of motivation are among the many factors that may be
involved. These factors may not have the same effect on a person at al times, some
effects may even cancel each other out (e.g. fatigue vs. noise) (Davies and Tune 1970;
Davies and Parasuraman 1982; Warm 1984; Parasuraman 1998). Obviously degradation
is a dynamic and highly nonlinear process, and as a feature of a CAS, well established.
The next question to answer is whether the structure of the underlying process is to some
degree hierarchical.

Wickens multiple resource model assumes that cognitive resources can be

divided into modalities and codes in different stages of the information process.
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Figure2.  Multiple Resource Model (After: Wickens, 2002)

Figure 2 is an adaptation of the better known cube that can be seen in many
textbooks (Wickens 1992; Matthews, Davies et al. 2000; Wickens 2002). It assumes we
have two main resource pools. one for the perceptual and central-processing phase, and
one for the response-selection and execution phase. These resources can be divided into
verbal and spatial, or, respectively, vocal and manual. The structure indicates a
hierarchical system. The system is also adaptive since we can focus our attention
(selective attention), thus filtering information to a certain extent. Thus, we adapt our
cognitive resource consciously or subconsciously (or both) to a changing environment.
This research claims that Wickens multiple resource theory fits into Holland’ s definition

of acomplex adaptive system.
E. APPROACH
Our research is based on the hypothesis that reduced human performance can be

modeled as a complex adaptive system. Our hypothesis synthesizes strengths of other

cognitive theories like connectionism, symbolism, and dynamicism.



Instead of using connected neurons in a neural network, we will model agents that

establish timely restricted connections. Thus we use a loosely coupledd network of MAS,
which are an ideal implementation tool for CAS (Axelrod 1997). We inherit the strength
of the symbolic approach® by using symbolic representation within our agents. Our
connected agents will work in parallel, exploiting the main strength of the connectionism
approach. Connections are established via communication routers, allowing us to cancel
or add new connections during runtime. This addresses the time dimension utilizing the
strength of the dynamic approach.
1 Reduced Human Performance Model (RHPM)

Our reduced human performance model first try to capture the effects of vigilance
decrement, such as that which plagues security screeners at airports. Many studies
involving reduced visual and auditory vigilance provide real-world data as a reference
(Matthews, Davies et a. 1990; Koelega 1992; Matthews and Holley 1993; Sawin and
Scerbo 1995; e, Howe et al. 1995; Gill 1996; Bahri 1994; See, Warm et a. 1997;
Balakrishnan 1998; Lane and Kasian 1998; Methot and Huitema 1998; Fenner, Leahy et
al. 1999; Temple, Warm et al. 2000; Zoccolotti, Matano et al. 2000). We conduct our
own experiment and utilize substantial research data to validate our model. Our approach

can be visualized as follows:

8 Loosely coupled is a software engineering term. It indicates that our architecture is composed of
modules that can operate independently from each other. Interaction between modules is based on
communication, thus modules can be exchanged and/or replaced at any time Bradley, G., A. Buss, et d.
(1998). "An Architecture for Dynamic Planning and Execution using Loosdly Coupled Components.”
Naval Postgraduate School Research Newdletter 8: 1-7. Chapter 4 describes the concept more closely.

9 Symbolic representations are understandable for the users, whereas the interpretation of weights on
nodes and connection (asin neural networks) isnot intuitive at al.
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Figure3.  Conceptual Framework for Reduced Human Performance Model

Figure 3 shows the RHPM framework. Symbolic constructor agents (SCA)
perceive information (impressions) and relay them to the cognitive module, which holds
a symbolic interpretation of the outer environment. The symbolic representation depends
on the inner state of the system. For example, a highly aroused person may perceive
background noise as a threat, whereas somebody used to the noise might not even register
this information. The cognitive module is a multi-agent system itself and contains several
diverse composite agents. This module coordinates intentions with actions and creates
behavior. The Capacity Manager is a multi-agent system, based on Wickens Multiple
Resource Model, which determines the current arousal level and introduces noise into the
system. It can aso interrupt transitions and access the cognitive module to suppress
processes. The impression stream is analyzed and, if appropriate, a capacity decrease is

initiated. It also evaluates capacity demands of planned activities, determining whether
these activities will be executed.

The Individual Sates and Traits (IST) module represents the personality,
emotions and goals. The GoalAgent deals with conflicting goals and actions. It uses a
weighting scheme based on personality traits to determine how to act in the face of

opposing goals. An example for a goal conflict might occur when an airport security
11



screener sees a long line of travelers waiting. He wants to decrease the queue, but also
wants to find any potential weapons. At some point he detects an item he cannot identify
but which does not look like a weapon. What will he do? The answer may lie in his

personality.

Personality plays a major role in human performance but does not account for
much of the variance. To go back to our example, there is evidence that introverts
outperform extraverts when it comes to screening (Methot and Huitema 1998; Gusev and
Schapkin 2001; Schapkin and Gusev 2001). The Stress Agent will capture the sensitivity
of human performance to increasing arousal. Evidence suggests that under conditions of
high arousal, an extrovert will outperform an introvert (Matthews, Davies et al. 1990) and
probably examine the unidentifiable item. A realistic cognitive model should capture this
interplay between conditions and personality.

We strive to create a cognitive model that can identify weaknesses in
organizations by modeling the effects of reduced human performance. Decisions ad
policies of not-so-rationa actors can be exploited to further some malevolent goal, so
agents must be forced to operate and decide with imperfect knowledge and restricted
cognitive resources.

F. CONTRIBUTIONS

This research strives to suggest a new cognitive model that simulates individual
reduced human performance. Our reduced human performance model is one of the
milestones to build a new kind of threat analysis simulation system.

1 Contribution Goals

Our research has four main goals:

To inaugurate a paradigm shift in human behavior modeling that takes
vagary into account based on convincing evidence from many sources.
To propose a framework for the next-generation cognitive architecture
(reduced human performance model RHPM) and to explain the
advantages of the proposed framework.
To implement parts of the framework to show its contribution by
modeling the challenging problem of individual vigilance decrement.

12



2.

To validate the implemented RHPM with quantitative and qualitative
anaysis.
Scope

It is beyond the scope of this research to design, implement and validate a new

cognitive architecture. However, even a partial implementation should be embedded in a

framework using proper design technigques so that the model can be enlarged at any time.

The theoretical underpinnings of our hypothesis need to be established by comparing and

contrasting new findings in different sciences. This research focuses on three main

points:

1.

Reduced Human Performance can be modeled as a complex adaptive
system.

The developed model allows the provisional working criteria for a
complex adaptive systemto develop.

The RHP Mode is strongly connected to the observations of human

experiments.

Our implementation focuses on cognitive resource modeling with respect to

vigilance tasks. This is meant as a proof-of-concept implementation and should add

validity to our hypothesis. Considerable future work is required in order to implement the

full framework.
DISSERTATION OVERVIEW

G.

The remainder of this dissertation is organi zed as follows:

Chapter 11, Related Work, describes current research on complex
adaptive systems in different fields. It uses a taxonomy to recognize CAS.
We will show the motivation behind applying CAS theory to this
particular field and also show the benefits. This chapter also describes
current state-of-the-art cognitive modeling, pointing out strengths and
weaknesses of cognitive models in terms of humanperformance

reduction.
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Chapter 111, Reduced Human Performance, introduces basics of human
performance and relevant studies in vigilance performance. It describes
the connection between attention, arousal, and vigilance in depth. It then
shows and explains the main findings of conducted personality type and

vigilance experiments.

Chapter 1V, Reduced Human Performance Model (RHPM), details
how the reduced human performance model and our composite agent map
onto each other. It states model assumptions and relates the design to

psychological models.

Chapter V, Experiments and Results, describes the design of
experiments and provides results. It also compares the achievements of

RHPM’ s implementation with current cognitive models.

Chapter VI, Concluson and Follow-on Work, summarizes our

contributions and addresses future expansions of this work.
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II.  RELATED WORK

Our research expands into two research areas. complex adaptive systems theory
and cognitive modeling. In this chapter, we describe applications of CAS theory to
different sciences and cognitive modeling and its current state of development. We
include strengths and weaknesses of some cognitive theories and resulting architectures
in terms of human-performance reduction.

A. COMPLEX ADAPTIVE SYSTEMS

CAS theory has been successfully applied to various sciences like sociology and
medicine. Historically, many sciences were founded based on Newton's mechanistic
explanation of physics. Newton hypothesized that the universe is mechanistic. He
envisioned the universe as a gigantic mechanic clock, where simple rules govern the
relationship of the single parts of this clock (Newton 1729). Since his rules were very
well suited to explain many phenomena (e.g. movement of starsin relation to each other),
his approach became the overwhelming approach for almost 250 years. Einstein’s
relativity theory showed where Newtonian physics fell short. Thus physics was probably
the first science that found complementary theories expanding the mechanistic worldview
incorporating dynamics of space and time relationships. Dynamic systems constantly
change into different equilibria and never maintain a particular equilibrium (Gell-Mann
1994). Meanwhile many other sciences are beginning to use CAS theory looking at their
domain from a different perspective. Economy is a prime example on how CAS theory
has changed the perception of a former static theory, called the neoclassical approach.
The initial research at the Santa Fe Institute (Arthur 1994; Cowan, Pines et al. 1994;
Arthur 1999) specifically used economics as one application area. We will describe some
of the applications | ater.

1 Definitionsfor Complex Adaptive System (CAS)

a. Santa Fe Ingtitute’ s Definitions

In 1995 researchers at the Santa Fe Institute in New Mexico formulated a
new way of using computer programs for research. John Holland, often called the father

of genetic systens, explained his ideas on complex adaptive systems during the Ulam
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series at the institute. Michel Waldrop outlined the ten most important points of
Holland’ s lecture:

1) First each of these systems is a network of many agents acting in
parallel.

2) Furthermore, the control of a complex adaptive system is highly
dispersed. There is no master neurone in the brain, for example,
nor is there any master cell within a developing embryo. If thereis
to be any coherent behaviour in the system it has to arise from
competition and cooperati on among the agents themselves.

3) Second, a complex adaptive system has many levels of
organisation, with agents at any one level serving as building
blocks for agents at a higher level. A group of proteins, lipids, and
nucleic acids will form a cell, a group of cells will form atissue, a
collection of tissueswill form an organ, etcetera.

4) Furthermore, said Holland - and this is something he considered
very important - complex adaptive systems are constantly revising
and rearranging their building blocks as they gain experience.
Succeeding generations of organisms will modify and rearrange
their tissues through the process of evolution. The brain will
continually strengthen and weaken myriad connections between its
neurons as an individual learns from his or her encounters with the
world.

5) At some deep, fundamental level, all these processes of learning,
evolution and adaptation are the same. And one of the fundamental
mechanisms of adaptation in any given system is this revision and
recombi nation of the building blocks.

6) Third, he said, all complex adaptive systems anticipate the future.

7) More generaly, every complex adaptive system is constantly
making predictions based on its various internal models of the
world - its implicit or explicit assumptions about the way things
are out there. Furthermore, these models are much more than
passive blueprints. They are active. Like subroutinesin a computer
program, they can come to life in a given situation and ‘ execute,’
producing behaviour in the system. In fact, you can think of
internal models as the building blocks of behaviour. And like any
other building blocks, they can be tested, refined, and rearranged
as the system gets experience.

8) Finally, said Holland, complex adaptive systems typically have
many niches, each one of which can be exploited by an agent
adapted to fill that niche.
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9) And that, in turn, means that it is essentially meaningless to talk
about a complex adaptive system as in a state of equilibrium: the
system can never get there. It is aways unfolding, always in
trangition. In fact if the system ever does reach equilibrium, it isn’t
just stable. It’s dead!

10)  And by the same token, there’'s no point imagining the agents in
the system can optimize their fitness, or their utility, or whatever.
The space of possibilitiesis too vast; they have no practical way of
finding the optimum. The most they can ever do is change to
improve themselves relative to what the other agents are doing. In
short, complex adaptive systems are characterized by continuous
novelty (Waldrop 1992, p.42).

Murray Gell-Mannl0 explains CAS:

A complex adaptive system acquires information about its environment
and its own interaction with that environment, identifying regularities in
that information, condensing those regularities into a kind of “schema’ or
model, and acting in the real world on the basis of that schema. In each
case, there are various competing schemata, and the results of the actionin

the real world feed back to the influence the competition among those
schemata (Gell-Mann 1994, p.165).

These statements indicate that there is no standard definition for complex adaptive
systems. Some researchers call the CAS approach the third way of doing science (Arthur
1994; Axelrod 1997). CAS provide insights into a problem domain, but these insights do
not necessarily forecast certain behaviors or behavioral ranges. Thus CAS do not function
as “weather forecasting tools’ rather, they show possible interaction producing emergent
behavior that could potentially occur at some point. Next we will describe our own
provisional definition and define working criterias to discern whether or not asystemisa
complex adaptive system.

b. Provisional Working Definition

A complex adaptive system consists of many autonomous agents that act
in paralel with decentralized control. The non-linear interaction between these agents
leads to adaptive and emergent behavior. The agents are organized in dynamically re-
arranging structures that change into different equilibria and never maintain a particular
equilibrium. In many systens, the CAS builds an internal (implicit or explicit) model of

the future. There is a strong sense of path dependency in CAS. This property is built upon

10 Murray Gell-Mann won the Nobel Pricein 1969 for his contributions to the discovery of the quark.
17



the interaction of autonomous active entities and the non-linearity of their impact upon
each other. Asthe system’s structure evolvesit incorporates information that can serve as
the foundation for new interaction and new behavior.

The following taxonomy can be derived from this definition:

Doesthe system consist of autonomous agents that act in parallel ?

Is the control of the system highly dispersed?

Do the agents engage in non-linear interactions?

Does the system adapt and does it produce emergent behavior?

Is the system changing its structure dynamically?

Doesthe system permanently change into different equilibria?

Does the system anticipate the future?

Does the system have a strong sense of path dependency?

Next we will describe some applications of CAS in more detail. We focus on the
classical examples showing what additional insights they generated.
2. Ecological Science
Ecologica science is the study of relationships between living things and their
environments. Complex adaptive systems theory has been used to describe the
interactions between elements in an ecological system. Examples for the applications
include salmon habitats as CAS with the SWARM software (Minar, Burkhart et al.
1996), and livestock breeding industries as CAS (Charteris, Golden et a. 2001). The
classic examplein ecological science, however, is Sugarscape.
a. Sugarscape
Sugarscape models artificial societies in an environment that consists of
resources (sugar and spices). Simple rules govern the behavior of autonomous agents and
produce rich emergent behavior. Sugarscape starts with a very smple artificial world
consisting of alandscape with sugar resources and agents gathering sugar.
Epstein and Axtell describe their research goal:

The broad aim of this research is to begin the development of a more
unified social science, one that embeds evolutionary processes in a
computational environment that simulates demographics, the transmission
of culture, conflict, economics, disease, the emergence of groups, and
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agent co adaptation with an environment, all from the bottom up. Artificial
society—type models may change the way we think about explanation in
the socia sciences. What constitutes an explanation of an observed social
phenomenon? Perhaps one day people will interpret the question, “Can
you explain it?’ as asking “Can you grow it?’ Artificial society modeling
allows us to “grow” socia structures in silico demonstrating that certain
sets of micro specifications are sufficient to generate the macro
phenomena of interest. And that, after al, is a central am. As socia
scientists, we are presented with “already emerged” collective phenomena,
and we seek micro rules that can generate them. We can, of course, use
statistics to test the match between the true, observed, structures and the
ones we grow. But the ability to grow them—qgreatly facilitated by modern
object-oriented programming—is what is new. Indeed, it holds out the
prospect of a new, generative kind of social science (Epstein and Axtell
1996, p.5)
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Figure4.  Sugarscape and Sugarscape with Agents ( From: Epstein and Axtell 1996,

p.21)

Figure 4 shows the basic setup of Sugarscape, with and without an agent
population. Sugar-dense areas are yellow; white spaces contain no resources at all.
Epstein and Axtell embellish this simple scenario by creating more and more behavioral
rules for their agents. They show emergent phenomena like wealth distribution, social
networks of neighbors, migration, combat, proto-history, economic networks, and
di sease-transmission networks.

One example of generated emergent behavior is migration, which shows

an aggregated behavior that single agents cannot achieve. Agents can move in only four
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directions (north, south, west, and east). However, the population migrates diagonally in
waves, from the lower-left corner to the upper right (north east) on their quest for sugar.

The authors conclude:

A wide range of important social, or collective, phenomena can be made
to emerge from the spatio-tempora interaction of autonomous agents
operating on landscapes under simple local rules (Epstein and Axtell 1996,
p.172).

The authors provide aCD containing movies of the dynamic changes in
certain situations. The visual impact is impressively dynamic. Thisis certainly againin
understanding how certain phenomena in societies arise. It is up to social scientists to
compare how the model’s rules and assumptions relate to real-world cause and effect.
Even if real-world factors are more complicated, CAS provides ways and means to
simulate these phenomenain ecology.

3. Organizational Science

Mitleton-Kelly1l provided an overview on how complexity theory changes the
perspective on organizational science. She criticizes the assumption that individuals
exhibit average behaviors which becomes predictable. In her opinion, this assumption
leads to a mechanistic linear model that is counterproductive in providing insights into
the different emergent phenomena in an organization. The interaction between
individuals with non-average behavior generates unpredictable, non-linear, and multiple
outcomes. These traditiona models also do not take the system’s sensitivity to initial
conditions into consideration. Thus important factors for the system’s behavior are
simply left out of the analysis. The behavior of a dynamic system might be unpredictable,
but the range of possibilitiesis limited. She calls the limited range of behaviors “bounded
instability” (MitletonKelly 1997).

In the state of bounded instability, strategy and planning acquires a new
meaning and the emphasis changes from established methodologies to
new ways of thinking. Some planni ng tools, such as scenario planning,
may still be used, but they will need to be applied in a different way and
seen from a fresh perspective. If uncertainty increases to the point of
instability, with the associated high turbulence, then al conventional
planning approaches become totally ineffective. The difference between

11 This paper was awarded Best Paper in Process Management by the British Academy of
Management in recognition of its‘excellence and influence’ in 1997.
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the states of bounded instability and instability, is that in the transition

phase, analogous to the edge of chaos, the behaviour may be new but it

does have pattern and structure. It will be the ability to recognize new

patterns as they emerge which will provide organisations with a real

competitive advantage in the future. Thinking in complexity terms helpsin

‘seeing’ the new patterns (Mitleton-Kelly 1997, p.15).

Marion and Bacon (Marion and Bacon 2000) describe how complexity theory can
help to gain insights into the phenomenon of extinction. Thus they try to answer the
guestion how robust, complex systems can become extinct. Classical reductionist theories
assume single causes for extinction, like the failure of new organizations (liability of
newness), improper organizational structure, and organizational inertia among other
theories. The authors claim that these theories overly simplify the underlying processes
and that the extinction of a complex systems results from multiple interactive events and
involved multiple chains of interaction. A system builds meta-aggregates by integrating
agents that provide raw material to an organization (i.e. suppliers). Other agents that
potentially have long-range impact on environment, supplies, and the like build the
meta- meta-aggregate of an organization. Marion and Bacon hypothesize:

Extinction or decline (defined as failure to achieve stated or assumed

goals) can occur when meta- and meta-meta-aggregates are poorly

developed, they can occur because complex systems are, by definition,

poised on the brink of disaster, and they occur when networks deteriorate

(Marion and Bacon, 2000, p.92).

They concluded that poorly developed meta- and meta-meta-aggregates and
deteriorating networks caused the failure of two businesses. The fit organization did show
evidence that arobust complex adaptive system could resist extinction due to its ability to
change, compromise, and adapt. The authors are convinced that a reductionist view on
the problem of extinction does not provide a holistic view. Success and failure of an
organization are a function of the dynamics of complex, interactive wholes.

The value of a new science certainly depends on its applicability to a specific
field. Complexity theory already has provided many useful metaphors for organizational
science. (Lissack 2000). However, its real value has not fully being realized. McKelvey
challenged complexity theorists to incorporate a systematic agenda linking complexity
theory development with mathematical or computational model development.
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Furthermore there needs to be a systematic agenda linking model structures with real
world structures in order to have an effective way to apply complexity science to
organizational science (McKelvey 2000).

4. Economy

The Santa Fe Institute immediately challenged classical economic theory with
complexity theory. John Holland and Brian Arthur spent many hours discussing how
complexity theory could be facilitated in economy (Waldrop 1992). Brian Arthur used
the El Farol bar problem to show amodel of an expectational economy:

One hundred people must decide independently each week whether to
show up at their favorite bar (El Farol in Santa Fe). The rule is that if a
person predicts that more that 60 (say) will attend, he will avoid the
crowds and stay home; if he predicts fewer than 60 he will go. Of interest
are how the bar-goers each week might predict the numbers showing up,
and the resulting dynamics of the numbers attending. Notice two features
of this problem. Our agents will quickly realize that predictions of how
many will attend depend on others predictions of how many attend
(because that determines their attendance). But others’ predictions in turn
depend on their predictions of others predictions. Deductively thereis an
infinite regress. No “correct” expectational model can be assumed to be
common knowledge, and from the agents' viewpoint, the problem is ill-
defined. (This is true for most expectational problems, not just for this
example.) Second, and diabolically, any commonalty of expectations gets
broken up: If al use an expectational model that predicts few will go, all
will go, invalidating that model. Similarly, if all believe most will go,
nobody will go, invalidating that belief. Expectations will be forced to
differ. In 1993 | modeled this situation by assuming that as the agents
visit the bar, they act inductively—they act as statisticians, each starting
with a variety of subjectively chosen expectational models or forecasting
hypotheses. Each week they act on their currently most accurate model
(call this their active predictor). Thus agents beliefs or hypotheses
compete for use in an ecology these beliefs create. Computer simulation
showed that the mean attendance quickly converges to 60. In fact, the
predictors self-organize into an equilibrium “ecology” in which of the
active predictors 40% on average are forecasting above 60, 60% below 60.
This emergent ecology is organic in nature. For, while the population of
active predictors splits into this 60/40 average ratio, it keeps changing in
membership forever. Why do the predictors self-organize so that 60
emerges as average attendance and forecasts split into a 60/40 ratio? Well,
suppose 70% of predictors forecasted above 60 for a longish time, then on
average only 30 people would show up. But this would validate predictors
that forecasted close to 30, restoring the “ecological” balance among
predictions. The 40%-60% “natural” combination becomes an emergent
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structure. The Bar Problem is a miniature expectational economy, with
complex dynamics (Arthur 1994, p.3).

Arthur claimed that the dynamics of an expectational economy could not have
been predicted with the traditional forecasting models. These traditional forecasting
models for the financial market work only well on first order, assuming rational
expectations. However, second order events like bubbles and crashes cannot be
accounted for by those theories. Classical expectational theories are useful if the rate of
change (i.e. updating the forecasting hypotheses) is slow. However, once the rate of
change is increased, complexity economics is better able to explain the dynamics of an
economy (Arthur, 1999).

5. Medical Science

Medical science provides two good examples of how complexity theory
provided more inside into the functioning of organ system. We will next describe
research on the heart and the immune system as complex adaptive systems.

The view that the heart is merely a muscular pump reactive to external stimuli is
changing, as this mechanistic view couldn't explain certain phenomena like myocardial
ischemial2, a dynamic process associated with both destructive and protective cellular-
response mechanisms. The heart appears to be a complex organ able to self-regulate and
adapt. Cardiac self-regulation is crucial in coping with myocardial ischemia. Doctors now
see the heart as a highly interconnected network of cardiac neurons signaling intracellular
reactions. This network adapts on the cellular level to certain input patterns and executes
specific output patterns. Transplanted hearts provide an excellent example of the
emergent property of heart-rate dynamics. Within a hundred days after transplantation,
the donated organ dynamically reorganizes its rhythm-generating system back to full
functionality, demonstrating that the transplanted heart is not passive in the assimilation

process. Even the decentralized heart shows self-regulatory patterns.

12 Myocardial ischemiais a condition in which oxygen deprivation to the heart muscle is accompanied
by inadequate removal of metabolites because of reduced blood flow or perfusion.
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This phenomenon has been used as an impetus for reassessing the prevailing
paradigm of cardiac regulation and adaptation (Kresh, lzrailtyan et al. 2002). Kresh

concludes;

The heart is goal-seeking and purposeful organ that can adapt/select a
course of action out of many possible strategies so as to optimize its
functional integrity in response to imposed "environmental" stresses. With
respect to cardiac function this implies homodynamic selection process.
Indeed, there may be a parallel between the brain acting as a self-
organizing system and the intrinsic cardiac nervous system of the heart
(Kresh, lzrailtyan et a. 2002, p.5)

The immune system is often used as a prime example for describing a complex
adaptive system. Holland described the immune system:

The human immune system is made up of large numbers of highly mobile
units called antibodies that continually repel or destroy an ever-changing
cast of invaders called antigens. The invaders — primarily biochemicals,
bacteria, and viruses — come in endless varieties, as different from one
another as snowflakes. Because of this variety, and because new invaders
are aways appearing, the immune system cannot simply list all possible
invaders. It must change or adapt (Latin “ to fit") its antibodies to new
invaders that appear, never settling to a fixed configuration. Despite its
protean nature, the immune system maintains an impressive coherence
(Holland 1995.p.2).

The theories on the immune system are mostly mechanistic and reductionist
theories. The prevailing mainstream theory is the clonal selection theory. It states that
during the prenatal development the self-recognizing capability of the immune system’s
receptors is removed, and that therefore anything they identify is treated as hostile. This
view has been challenged because there is evidence that the invading pathogens relate to
humans on the molecular level (Hershberg and Efroni 2001).

It is becoming clear that the field of immunology is approaching a

paradigm shift. It is agreed by most researchers that the immune system is

a complex system both in its composition and its behavior. However, the

most popular ideas of immune function treat the immune system in a
mechanistic and reductionist manner.(Hershberg and Efroni 2001)

The immune system should be viewed as complex adaptive system that sees

patterns and understands context in order to survive. Grilo implemented an artificial
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immune system (AIS) based on complex adaptive systems theory. Since it wasn't
possible to model all the details of an immune system (e.g. an immune system can have
more than 10’ receptors expressed at any given time) he focused on interactions. He
explained that a model like his cannot be used for precise quantitative outcomes but for
studying patterns of behavior. Therefore the occurring interactions have to be realistically
modeled. His simulation system shows strong resemblance between model and red
immune system and has been used and validated in various experiments (Grilo, Caetano
et al. 2000).

Artificial immune system simulators aim the domain of hypothesis
generation and experiment prototyping. This class of systems can help to
design rational therapeutic intervention as well as understanding the
process of disease. Moreover, the system’s large parameter set can be
constructed upon what-if hypothesis, otherwise difficult to attain in
laboratory. The resulting data, obtained from in silico simulations, can
support clinical trials and diagnosis and further bound in vivo laboratory
tests to a set of experiments which will probably lead to attractive
outcomes (Grilo, Caetano et al. 2000,p.18).

These examples show that the application of complexity theory in medical science
challenges prevailing mechanistic paradigms. However, it better explains phenomena
previously ignored by theories. More importantly it furthers the understanding and in the
long run will improve treatments.

6. Combat Modeling

For the last century, conventional wisdom regarding the basic processes of war
and most current models of land combat has been rooted in the idea of Lanchester
Equations (LE). In 1914, F.W. Lanchester used differential equations to express attrition
rates on the battlefield. These equations have been modified over the years, but the main
assumption is that combat is always driven by a force-on-force attrition rate. This theory
ignores gpatial relationships and the human factor in combat. It certainly was not
adequate to support analysis of the United States Marine Corps’ vision of small, highly
trained, well-armed autonomous teams working in concert, continually adapting to
changing conditions and environments. Thus, Prof. llachinski challenged the almost
century-old theory by arguing that land combat can (and should) be modeled as a
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complex adaptive system. He transferred complexity theory into the military domain and
showed that land combat properties resemble the properties of CAS (Ilachinski 1997).
His work has generated a lot of interest in combat modeling especialy because tactical
behaviors such as flank maneuvers, containment, encirclement and “Guerillalike’
assaults emerged out of his implementation, called ‘lrreducible Semi-Autonomous
Adaptive Combat ‘(ISAAC).

In ISAAC, the "final outcome" of a battle -- as defined, say, by measuring

the surviving force strengths -- takes second stage to exploring how two

forces might “co-evolve” during combat. A few examples of the

profoundly non-equilibrium dynamics that characterizes much of real

combat include: the sudden “flash of insight” of a clever commander that

changes the course of a battle; the swift flanking maneuver that surprises

the enemy; and the serendipitous confluence of several far-separated (and

unorchestrated) events that |ead to victory. These are the kinds of behavior

that Lanchesterian-based models are in principle incapable of even

addressing. ISAAC represents a first step toward being able to explore
such questions (Ilachinski 1997,p.226).

Ilachinski’ s work has not died out. Many research projects continue to explore his
ideas. Project Albert is an international military research effort with many participating
countries (i.e., United States, Australia, New Zealand, and Germany) (Horne and Lauren
2000). The MOVES Institute especialy has produced many follow-on projects. Hiles,
VanPutte et al. (2001) provide agood summary of thiswork.

The paradigm for combat modeling has fundamentally changed and improved
insights into the processes. These types of simulation systems will enhance the
capabilities exploring policy and concept development as well as force structure
devel opment.

7. Complexity Theory as Worldview Challenge

So far we have defined complex adaptive system, explaining the main features of
the underlying theory. We also showed that the predominant mechanistic wordview has
successfully been challenged in several areas. Complexity theory has in fact improved the
realism of simulation systems, like the artificial immune system (AIS) or Ilachinski’s

ISAAC. It aso has furthered the understanding of previously ignored (or taken for
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granted) phenomenona (e.g. succesfull heart transplantations). In the social sciences, the
average behavior assumption combined with the rationality assumption of human
behavior has led to a linear mechanistic worldview (Tosey 2002). By refusing these
assumptions, economics and organizational sciences have advanced to a better
understanding of the relationships between individual elements (firms, groups, and
individuals). A natural extension to this view is to research how individuals are modeled
and whether complexity theory could improve the understanding of individual based
behavior. Next we will describe current state of the art in cognitive modeling and show
how much current models got stuck in a mechanistic rut.

B. COGNITIVE MODELING

The next paragraphs roughly describe the past and ongoing research in cognitive
modeling. After a short history of cognitive modeling, we briefly describe the three main
approaches (symbolism, connectionism, and dynamicism) and show recent developments
for some cognitive architectures. This can by no means be a complete description of the
entire field, but should provide the reader with sufficient background and resource
information.

1. Developmentsin Cognitive M odeling

In the 1950s, William Dember announced the cognitive revolution. Up to then,
psychology was mostly influenced by behaviorists. However, many explanations for
human behavior proved inadequate and the interdisciplinary collaboration among
different sciences (engineering and, especially, computer science) did much to advance
cognitive psychology. In 1956 Chomsky, Newell and others defined the application of the
computer metaphor for cognitive behavior and thereby initiated the rise of cognitive
psychology (Matthews, Davies et a. 2000).

Matthews also describes the correlation between cognitive psychology and
cognitive modeling. He formulates a synthesis of different approaches to cognitive
modeling and the famous knowledge level, a level introduced by one of the leading
artificial intelligence researchers, Alan Newell. We will describe Newell’ s concept, then
explain the different approaches, and finally put it back together to show the interfaces

between the three main levels.
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In 1972 Newell formulated the computational approach in the famous physical
symbol system hypothesis (PSSH). Ten years later he introduced a new computer system
level, namely the knowledge level, to the then-known computer levels. Newell argued
that there exists a distinct computer system level, lying immediately above the symbolic
levell3, which is characterized by knowledge as the medium and the principle of
rationality as the law of behavior (Newell 1982, p.99). The principle of rationality states
that humans behave rationally, always choosing behaviors that contribute to goal
achievements. This argument seems strange, considering how irrational people can be.
However, Newell also made clear that the assumption of rationality is weak and that the
knowledge level is fairly extensible, e.g. with emotions, uncertainty and the like.
Psychologists used the different levels as an analogue to human behavior. Newell’s
knowledge model has been used to characterize the depth of explanation that different
cognitive approaches use (Matthews, Davies et al. 2000)

Cognitive science was born in the 1970s. It combined psychology, philosophy,
linguistics, neuroscience, and artificial intelligence. Traditionally, cognitive science is the
study of knowledge-based processes. Much advancement since then indicates that
knowledge is only a part of the equation. Other factors like intelligence, emotion, and
personality play amajor role.

2. Symbolism Approach to Cognitive M odeling

In 1975 Putnam, following Turing's train of thought on Turing machines and
Newell’s PSSH, was probably the first scientist explaining the computational theory of
mind.

The computational theory of mind (CTM) holds that the mind is a digital
computer: a discrete-state device that stores symbolic representations and
manipulates them according to syntactic rules; that thoughts are mental
representations- more specifically, symbolic representations in a language
of thought; and that mental processes are causal sequences driven by the
syntactic, but not the semantic properties of the symbol (Wilson and Frank
2001, p.1341).

13 The symbolic level is the interaction level with humans. This level encompasses variables alows
human beingsto “talk” to the computer.
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This approach to cognitive modeling is best described as symbolic cognitive
modeling. One of the most criticized features of this theory is its sequential nature.
Melanie Mitchell described the weaknesses of computational theories in cognitive
sciences as theories of structure, making claims about the information processing and

functional structure of mental states.

Most of these theories assume that information processing consists of
manipulation of explicit, static symbols rather than the autonomous
interaction of emergent, active ones. Such theories typically cannot easily
explain what driving forces and constraints there are on how the mental
guestions can change, what trajectories they can take, their coupling with

the body and environment, and how high-level symbols can emerge from a

lower level substrate (Mitchell 2000, p.7).

Later we will describe strengths and weaknesses of a classical symbolic cognitive

architecture (SOAR).

3. Connectionist Approachesto Cognitive Modeling

Cognitive modeling progressed by including the connectionists approaches that
contrasted symbolic models with huge parallelism.

Connectionist cognitive modeling is an approach to understanding the

mechanism of human cognition through the use of simulated networks of

simple, neurontlike processing units (Wilson and Frank 2001).

These types of models are often used for natural cognitive tasks. A major
criticism for this theory is that it cannot explain behavior on alevel that is understandable
for humans. So far, applications of the theory cover subconscious functions, thus the
approach is not yet scalable towards an entire cognitive architecture with current
technologies.

Researchers have tried to use the strength of both approaches and build hybrid
systems. ACT-R isavery prominent hybrid cognitive architecture and we will discuss its
strengths and weaknesses shortly.

4, Dynamical Hypothesis

One of the latest developmentsin cognitive modeling is the dynamical hypothesis
(DH) for cognition. Inspired by connectionists models, it contrasts the symbolic

cognitive modeling hypothesis in several ways. The most noticeable difference is the
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assumption that cognitive agents are dynamical systems and not digital computers. The
dynamical hypothesis applies differential equations to understanding cognitive functions.
The approach considers the innate interaction between the embodiment of the mind and
the situatedness of human cognition. Port states that:

The dynamical approach to cognition is also closely related to ideas about

the embodiment of mind and the environmental situatedness of human

cognition, since it emphasizes commonalities between behavior in neura

and cognitive processes on one hand with physiologica and

environmental events on the other. The most important commonality isthe

dimension of time shared by al of these domains. This permits real-time

coupling between domains, where the dynamic of one system influences

the timing of another, (Port, 2001, p.1).

There is an overlap between the connectionist and dynamical hypothesis
approach. However, van Gelder, aformer DH advocate, 14 explains the differences:

Connectionist networks are generally dynamical systems, and much of the

best dynamical research is connectionist in form. However, the way many

connectionists structure and interpret their systems is dominated by

broadly computational preconceptions. Conversely, many dynamic models

of cognition are not connectionist networks. Connectionism is best seen as

straddling a more fundamental opposition between dynamical and

classical cognitive science (Wilson and Frank 2001, p.245).

It is evident that certain reduced human performance could be modeled with
differential equations. It is aso obvious that situational awareness (environmental
situatedness) has to influence the simulated human performance (Endsley 2000).
However, it appears to be very difficut to scale a model implementing DH to a holistic
model of human performance. It also appears very doubtful that individual behavior can
be modeled realistically. This approach would certainly lead into the difficulties combat
modelers discovered using Lanchester equations. The coefficients used in these equations
are very critica and it appears impossible to validate them. Expressing individual
differences as coefficients in an equation!® appears to be impossible to validate too.
However, the notion of time, which DH uses, is certainly important when modeling

human performance. Humans tend to have decreased performances over time on task,

14 Email correspondence with Prof. Van Gelder

15 RHPM certainly has to parameterize individual differences. Additionaly different goals and
behaviors can be used to expressindividualistic personalities.
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especially if circumstances (e.g. sleep deprivation) require a lot of compensatory
resources (Styles 1997).
5. Cognitive Theoriesand Their Levels
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Figure5. Levelsof Explanation in Cognitive Science

Figure 5 shows a tranglation of Newell’s knowledge level model. The biology
level contains a physical, neuronal representation of cognitive processing. The symbol
processing level isdivided into two layers:

1) Algorithm, for the formal specification of programs for symbol

manipulation.

2) Functional architecture, alowing real time processing operations

supporting symbol manipulation.

The knowledge level contains goals, intentions and personal meaning, supporting
adaptation to external environments. Using this picture, one can explain the different
modeling approaches based on the level they try to explain. The connectionist approach
(e.g. PDP ++), as well as the dynamical approach, interface the biology level with the
symbol processing level (O'Rellly and Munakata 2000). The classical symbolic model
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approach remains on the symbol processing level (e.g. SOAR). If cognitive models
include a strategy concept, they also use the interface towards the knowledge level.

Our approach potentially links the biology level to the knowledge level. In
psychology this approach is studied in the field of evolutionary psychology (EP). It
basically clams that there are genetically evolved brain circuits dealing with certain
problems by creating adaptive behavior. Thus it contrasts the assumptions of the
symbolicism approach. Buss claimsthat :

First, mainstream cognitive psychologists tend to assume that cognitive
architecture is general purpose and content free. This means that the
information processing devices that are responsible for food selection are
assumed to be the same as those for mate and habitat
selection....Evolutionary psychologists make precisely the opposite
assumption — that the mind is likely to consist of a large number of
specialized mechanisms, each tailored to solving a different adaptive
problem (Buss 1999, p.375).

EP emphasizes human cognitive architecture a a product of evolution, drawing
on two theories in its attempt to understand the mind: Darwin’s theory of evolution by
natural selection and Turing's theory of computation. Darwin’s theory asserts that
psychological mechanisms are adaptations. Turing's theory of computation stresses the
treatment of psychological mechanisms as information processors, and minds as
computers. EP proponents claim that the physical symbol system hypothesis is an
incorrect depiction of the human mind because it encapsulates the mind as a universal
machine. EP works under the assumption that the human mind represents only the Turing
machine's finite-state control system. This suggests that the human mind is not like an
entire personal computer, but rather, similar to a computer’s processor. This processor
has a small set of instructions and a fixed set of hard-wired operations (suggesting an
interesting approach to modeling reactive behavior). A processor also possesses memory
storage, enabling it to perform operations according to an instruction set. A comparison
of long-term human memory to a hard-wired set of operations, and working memory to a
registry set, is obvious and engaging. Our research explores EP findings that support the

proposition that specialized cognitive functions are the result of evolution (Cosmides and
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Tooby 1998; Crawford and Krebs 1998; Buss 1999; Evans and Zarate 1999; Badcock
2000; Cartwright 2000).

If we take this theory for granted, we should be able to identify cognitive
functions that can be modeled as evolvable systems. These systems adapt to their
environment and could be characterized as complex adaptive systems. Our approach to
cognitive modeling tries to synthesize parts of the three described cognitive theories
(symbolism, connectionism, dynamicism), using all three levels of Newell’s knowledge
level, leveraging findings of EP, within a complex adaptive system.

6. State-of-the-Art Cognitive Modeling

This section briefly describes the current state of the art in cognitive modeling by
looking at modeling human and organizational behavior. After a summary of the National
Research Council (NRC) findings in 1998, we will show the development of cognitive
architectures from 1998. The report provides a far more detailed description (Pew and
Mavor 1998). The NRC authors used the following taxonomy to characterize the best-
known cognitive architectures:

What was the original Purpose?

Which sub-models have been implemented?
. Sensing and Perception

" Working/Short Term Memory

. Long-term Memory

. Motor

What type of knowledge representation is used?

. Declarative

" Procedural

Which higher-level cognitive functions are modeled?
" Learning

. Situation assessment (overt and inferred)

" Planning

. Decision making

What type of output does it provide?

Is it multitasking capable?

. Seria/Parallel

" Resource representation

. Goal/Task Management

Can it model multiple humans?

How and where does the implementation work?
Platform
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Language
What type of support environment is needed?
Have there been validation efforts?

This taxonomy left out some important questions like:

Can the cognitive architecture model individual behavior based on a
personality-trait model (e.g. five factor model)?

Does it model individual reduced performance caused by interna or
external stressors/moderators?

How does the model behave when it encounters previously unknown
Situations?

None of the architectures Pew evaluated has achieved a state where the answer to
these questions would be positive. The panel addressed general weaknesses and
shortcomings of these modelg/architectures, and then recommended short, intermediate
and long-term research goals. The following statement shows an overall evaluation of
models currently used in military applications. Thus it is fair to say that, in terms of
models in active use, the introduction of human behavior isin itsinfancy(Pew and Mavor
1998, p.4).

Many models cannot adapt to mild deviations from the conditions under which
they were created. Often they produce unrealistic behavior and simplistic responses to
these conditions. As pointed out earlier, even the best models assume ideal human
behavior, strictly following doctrine and not taking human limitations and variation
performance into account. Hence current models lack the scope of realism that is required
for modeling human behavior. Human behavior modeling should include the realistic
modeling of observable individual behaviors. Realism should be increased by adding
noise (moderator variables such as emotion or workload) to the simulation. This leads to
the issue of reduced human performance, a mgjor modeling problem that the described
architectures have not yet addressed successfully.

Human behavior representation (HBR) should be doctrinal (where applicable),
realistic, creative and/or adaptive. This implies that non-rigid or non-brittle behavior

needs to be introduced with a new cognitive architecture. One of the SOAR developers
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stated that unanticipated Situations were the most difficult feature to put into the
computer program. The panel came to the following conclusion:

The development of a truly adaptive model that would solve the general

problem has not been actively pursued (Pew and Mavor 1998, p.44).

Analyzing the general shortcomings of current cognitive models, the connection
between theory and actual implementation becomes obvious. A mechanistic view
(theory) on human behavior can only produce mechanistic behavior. We claim that a
multi-agent system with robust behavior can handle unanticipated situations and hence
would contribute to solving the general problem. New models of human behavior should
include judgmental errors, individual differences, time pressure effects, degradation of
cognitive function such as fatigue effects and (in our case) vigilance decrement, and
adaptive planning based on learning. The simulated entities should have local situational
awareness in the sense that they can interpret the state of the surrounding environment
and compare it to their own goals and desires. However trivia or complex the model
might be, the purpose is to make explicit:

The information provided to the human behavior representation from the
external world model.

The processing (if any) that goes on inside the reduced human
performance model;16 and

the output generated by the model.

7. Recent Advancesin Human Behavior M odeling

This section describes the development in human behavior modeling since the

panel’s report.

a. The Agent-based Modeling and Behavior Representation
(AMBR) Project

U.S. Air Force Research Laboratory (AFRL) took the panel’'s
recommendations and funded a new research program: AMBR Model Comparison
Project. The goals for this project follow the roadmap, provided by the NRC report:

To advance the state of the art in cognitive modeling

16 This clearly requires symbols that we can interpret.
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To develop mission-relevant human behavior representation

To publish tasks, models and available data to support developers

To compare performances of different cognitive architectures

Four different teams (Air Force Research Laboratory (AFRL) with
Distributed Cognition (DCOG), Carnegie Mellon University (CMU) with ACT-R, CHI
Systems with Cognitive Networks (COGNET/iGEN), and Soar Technology with EPIC-
Soar) developed or improved their architectures to fit an air-traffic-controller scenario.
The scenario was simplistic, but required multi-tasking capability (Gluck and Pew 2001).
A simulated air traffic controller had to manage the transition of several aircraft from one
traffic sector to another. A fifth participant (BBN technology) mediated between AFRL
and the teams. BBN generated different scenarios, collected human data and provided the
statistical analysis for the model comparisons. The results showed some similarities
between human data and the models behavior (Gluck and Pew 2001). However,
considering that only eight ACT-R, two Epic-Soar, two COGNET/IGEN and two DCOG
controllers were ssimulated, it is doubtful that the results account for the true variability. It
appears that the significance of the experiment suffered from these low numbers of
experimental runs.

Interestingly enough, AFRL stated that the participating modeling
architectures were challenged and improved as a direct result of their participation in this
project, which we consider to be an indication of success in advancing the state-of-the-
art. (Gluck and Pew 2001) This clearly supports the NRC report’s assumption (“HBR in
its infancy”) since even the simple air traffic controller scenario helped improve the
architectures.

(1) Distributed Cognition (D-COG): Next we will describe the
new cognitive architecture D-COG and other participating cognitive architectures
improvements. D-COG is a new architecture introduced by AFRL. It is ahybrid approach
between symbolic and connectionist approach. Their approach uses ideas of cognitive
systems engineering and computational neuroscience. The resulting architecture is
expected to provide more robust behavior. The architecture is AMBR domainspecific

and consists of four modules:
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A cognitive module that sets goals and prioritizes tasks

A procedural memory module that contains aircraft status information and
knowledge on how to accomplish specific tasks such as transferring an
aircraft or accepting an aircraft

A visual sampling module that controls eye movements and provides for
perceptua recognition, and

A motor module through which the model operates the workstation
module (Eggleston, Young et a. 2001, p.7).

D-COG compared well against the other architectures, although
the authors indicated a problem with repeatability of results. In any case, it is evident that
new cognitive architectures stand a chance against “legacy” cognitive architectures
indicating that their exploration is a worthwhile research topic.

(2) States, Operators and Rules (SOAR): The panel’s short-term
research goals suggest that hybrid cognitive architectures could improve and advance the
state of the art. Participating in the AMBR project, SOAR Technology improved SOAR’s
perception module by combining it with Executive Process-Interactive Control (EPIC).
The hybrid architecture is now called EPIC-SOAR. Another improvement resulted in an
architectural change of SOAR’s memory system. The changed architecture incorporates
Adaptive Control of Thought (ACT-R)’s base-level activation and base-level learning
concepts.

The generd ideais that when an element in working memory is created, it
is assigned an initial level of activation; a base-level of activation. The
activation of a newly created memory immediately begins to decay
logarithmically with time. When the activation falls below athreshold, the
memory element is forgotten. Forgetting is implemented by removing a
decayed memory element from working memory. When an element is
used, its activation receives a small boost, but the activation immediately
begins to decay, albeit from the newly boosted level (Chong 2001, p.36).

Thus, the EPIC-SOAR memory system now more closely matches
the human memory system. Another very interesting approach to improving SOAR is an
ongoing research effort to use its architecture in single-shooter games. It has been used as
a computer-generated opponent in the game of Quake (Laird 2000). This has certainly

37



been a very important step forward by combining advances in computer gaming and
artificial intelligence. SOAR appears to be the most often used cognitive architecture in
military application.

SOAR needs many rules to smulate human behavior: e.g. a fixed-
wing aircraft FWA-SOAR uses more than 7000 rules and still needs operator invention to
realisticaly model human behavior (Pew and Mavor 1998). This is certainly a
disadvantage of the system. Although it has a learning mechanism incorporated
(chunking) it does not claim to generate evolving behavior. Thus, it cannot learn
completely new rules without supervision. One of our goals is using evolutionary
algorithms to create emergent behavior that has not been thought of by analysts but is till
feasible.

(3) Cognition as a Network of Tasks (COGNET): CHI Systems
participated with the Computer Generated Forces CGF-COGNET variant of COGNET.
CGF-COGNET incorporates several human behavior modeling improvements. A maor
improvement is CGF-COGNET’s capability to model effects of workload on human
behaviors. During the conducted experiments, CGF-COGNET realistically showed better
performance than COGNET when the simulated air traffic controller had more support
during a scenario. CGF-COGNET differs from COGNET by extending the information
processing mechanism and better capturing the time and accuracy of a process. It also
incorporated a meta-cognitive component introducing cognitive proprioception
(situational awareness) and metacognitive controls (manage interruptions and resource
conflicts). (Zachary 2001) COGNET has already been used for smulating adversariesin
submarine war fighting. It can be characterized as a classical symbolic cognitive

architecture with all the pitfalls described earlier.

(4) Adaptive Control of Thought (ACT-R): Carnegie Mellon
University also participated with the ACT-R architecture. Some improvements of the
architectures were introduced during the AMBR experiment. Since ACT-R’s fidelity was
clearly below those of significant tasks such as air traffic control, it added effects of time
pressure and high information demands to its architecture. It now has the capability to

38



model task interruptions and workload effects (Lebiere, Anderson et a. 2001). One of the
strengths of the model is its goal-oriented structure. This type of structure lends itself to
modeling individual differences by prioritizing goals differently. However, it has not yet
incorporated a personality model to capture personal differences.

(55 AMBR Achievements: AMBR'’s fourth goal (comparing
cognitive architectures) proved to be very difficult. The experimental design was lacking
clear measures of performance and a sound design strategy. It did not address adaptability
or flexibility, which we believe is a very important feature of cognitive architectures. It
also did not address modeling individual performances needed to show the variety of
human behavior. Obviously the devel opers had problems getting the experimental data on
time and the calibration process was short. However, it was certainly worthwhile to see
how these architectures improved and how their strength and weaknesses were
discovered. This offered the opportunity to characterize cognitive architecturesin relation
to an application. Ultimately, designers could decide which model makes most sense for
an application given its particular goals. One can easily imagine that we could use a
cognitive toolbox that provides the best tools for every application. However, this would
not only require interoperability but also interchangeability between architectures. With
respect to the propriety issues it is doubtful that current architectures realy “want” or are
able to achieve this goal.

AMBR was finished in May 2003. Round 3 and 4 have brought
improvement to participating architectures. However, Pew concluded that:

And indeed, one of the features most often missing in the models that have
been procured to date is a reasonable range of responses to a given
situation. Attention to individual differences has the potential to contribute
to improvements in the range of behaviors that models can provide.
Procurements can require individual differences as a means to obtain a
range of behaviors (Pew et al, 2003, p.8).

39



b. Use of Complexity Theory in Cognitive Science

We now describe research aready utilizing complexity theory on the scale
of cognitive functions. Before we start our discussion we need to define cognitive
functions. The NRC Report on Modeling Organizational and Human Behavior identified
five high level cognitive functions (Pew and Mavor 1998):

Learning

Decision Making
Situation Awareness
Planning
Multitasking

Guy Boy gave avery concise definition for cognitive functions:

A cognitive function is ssmply a human cognitive process that has arolein
a limited context using a set of resources. By definition, a cognitive
function enables its user to transform a (prescribed) task into an activity
(effective task). For instance, identifying situations, coordinating actions,
making decisions and planning are high-level cognitive functions. (Dr.
Guy Boy Director of EURISCO, the European Institute of Cognitive
Sciences and Engineering, 1997)

He identifies different levels for cognitive functions. Higher level
cognitive functions include decision-making. Current insights into decision-making led to
a new focus of research towards naturalistic decison making (NDM). One of the
important lessons NDM generated was the fact that experts use most of their energy in
assessing a situation, not in deciding what to do (Klein 1999). It has become obvious that
most experts use intuitive decisions that the rationality principle cannot explain. Clearly,
the rationality assumption is a cornerstone in Newell’s PSSH (Newell 1982). Instinctive
or intuitive decision making shows that sometimes it pays to have hard-wired or reflexive
behavior. One example is that of afireman squad leader who went into a burning building

with his men. He felt that something was wrong and retreated from the building. Seconds
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later, the building collapsed. Intense investigation helped to explain what happened: The
squad leader was very experienced with fires of this type. However, he couldn’t explain
the extreme heat in the building given the distance from the fire. In other words, his
expectations were not met. The heat was the result of a fire in the basement that hadn’t
been detected at that point (Klein 1999). We hypothesize that his experience led to the
development of a specialized cognitive function: a fire-threat detection mechanism. This

would explain why he didn’t have to think — but just react.

John Sokolowski conducted research on how to implement the
Recognition Primed Decision Model by Gary Klein. He compares different approaches
and concludes:

A composite agent uses multi-agent system simulation technology to
implement various cognitive processes of a single entity or agent. It is this
author’s contention that a composite agent’s decision-making method
closely matches that described by the RPD model. This close match is
expected to produce a better implementation of the RPD model
(Sokolowski 2002).

Sokolowski’s hypothesis directly supports CASH. The composite agent
technology has been developed utilizing CAS theory.

Another example for the modeling of alow level cognitive function comes
from the Santa Fe Ingtitute: Melanie Mitchell, Douglas Hofstadter and James Marshall
have been working on modeling the subconscious cognitive function of drawing
analogies. Melanie Mitchell claims that a complex adaptive system is capable of making
analogies which is a key feature to human intelligence and creativity (Mitchell 2000).
The origina computer program “Copycat” was expanded by James Marshall and it is
now called “Metacat”. “Metacat” operates in a micro domain, drawing analogies from

sequences of |etters. One example might be
abc b abd

Kip 2
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“Metacat” then tries to find a creative answer to the question mark. The
sequences jkm or jkd would certainly be possible answers. The “Metacat” approach is
sometimes belittled because it appears to be domain restricted. However, the researchers
claim that they have discovered concepts that will help them to evolve software that can
act creatively (Marshall 1999).

This clearly supports our hypothesis. Analogy-making, modeled as a CAS,
is certainly a part of decision-making; decision making is a high level cognitive function
that is integral to any cognitive architecture. We claim that a combination of CAS still
represents a CAS. Thus, the complex adaptive system hypothesis (CASH) seems to be
the natural conclusion of the claims shown so far.

C. SUMMARY

In this chapter, we explained the general shortcomings of cognitive models. It is
only recently that researchers have tried to capture more realistic human performance by
considering workload for air-traffic controllers. The strength of the three approaches
(symbolicism, connectionism and dynamicism) should be exploited in a synergistic
effort. We have described cognitive architectures and their current devel opments to show
that, despite their ongoing improvements, they are ot able to model individual reduced
performance. We also argued by showing D-COG's success that new architectures
performances can compare favourably to legacy cognitive architectures.

Melanie Mitchell of the Santa Fe Institute, pointed out that cognitive phenomena
would be understood by rapprochement between “computationa talk” and “dynamics
talk”. She is convinced that the use of complex adaptive systems will create a better
understanding of human behavior (Mitchell 1998).

We want to enhance her assumptions by modeling a known human phenomenon
called vigilance decrement. The next chapter explains this phenomenon and discusses
current research in this area.
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I11. REDUCED HUMAN PERFORMANCE

A. INTRODUCTION

This chapter discusses human performance and its complexity. Although the
research focuses on reduced human performance, enhanced performance is an integral
part of performance. Thus, our framework and the cognitive model have to take

performance variability into consideration.

There are numerous definitions for human performance. This research uses a

definition that stems from performance psychology:

Human beings are born to perform. In a broader sense, we perform every
time we engage in a goal-directed activity (Matthews, Davies et a. 2000,

p.1).

Earlier this research pointed out that most cognitive models assumed ideal
behavior. Real human performance, however, suffers from breakdowns and failures.
Human errors play a magjor role in accidents such as car or airplane crashes. Performance
effectiveness depends on several factors which are described in the next section.

B. PERFORMANCE FACTORS AND MEASURES

1 Human Performance Formula

Human performance is influenced by external factors (i.e. stress factors like heat
or noise), by internal factors (i.e., motivation, skills) and certainly by task variables (i.e.,
task difficulty and task time).
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Human Performance= f(O" C~ W);

Human Performance

Opportunities

Figure6. Human Performance Formula (Matthews, Davies et al. 2000)

Figure 6 shows a formula used in performance psychology identifying the
contributing factors for performance variability. Matthews used the work of Blumberg on
the theory of factors influencing work performance.

The first is capacity (C), which refers here to all the basic characteristics
that promote good performance, such as intelligence, learned skills and
physical fitness. ... The second is willingness (W) referring to motivational
and attitudinal factors, which may allow the person to use their capacities
to full advantage, or aternatively hinder them in fulfilling their potential.
The third factor, opportunity (O), refers to the physica and socia
environment provided by the organization: workers need the right tools
and social support to give their best. Performance reflects the interaction
of these three factors, so the determinants of work performance can be
expressed as follows: Performance = f(OxCxW) (Matthews, Davies et a.
2000, p.14).

In the context of this research the definition of capacity is enhanced by including
attentional resources and its variability over time. This formula will be transferred to
demonstrate the nonlinearity of vigilance performance and the impact of behavior
moderators or stressors.

One of the mgjor challenges to validate human behavior modeling is that there are
numerous measures of performance and that this is a widely unexplored field of human

factors. Some of the measures are quantitative and measurable (overt). However,
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probably the more “interesting” ones are the qualitative measures of human performance
(covert). The next sections describe both types and gives examples.

2. Quantitative M easures

Quantitative measures are overt measures of human performance. Some of these
are easily measured like reaction time,17 error rate, throughput, accuracy, short term
memory capacity, long term memory recall. More advanced measures include mental
arithmetic and physiological measures such as alertness, heart rate, pupil diameter width,
or measures established with an electroencephalogram (EEG). Parasuraman reports
different vigilance experiments that used event-related potential (ERP) activity and EEG
beta waves to determine the date of arousal during vigilance tasks (Parasuraman 1998).
These measures are normally taken before and after an experiment to establish abaseline.

However, there are aso some normative data used for computerized
neuropsychological assessment (i.e. closed head injury evauation) in the medical
community. One example is metric data taken from U.S. Navy divers:

The Automated Neuropsychological Assessment Metrics (ANAM) was
identified as a potentialy useful screening instrument for assessing the
cognitive abilities of divers. Normative data from 113 United States Navy
divers were collected and are presented. The instrument is computer based
and provides millisecond timing while automatically scoring and
summarizing. It is purported to afford the level of sensitivity necessary for
detecting cognitive problems that can result from diving, as well as central
nervous system decompression sickness and oxygen toxicity. The
instrument provides a good screening tool for suspected cognitive
problems, and using it aong with the other medical assessment tools is
encouraged (Lowe and Reeves 2002, p.1).

Unfortunately it is not easy (sometimes for obvious reasons) to extract these data
and utilize it for research in cognitive modeling. In the optimal case, a cognitive model
could be configured with this screening instrument. The cognitive model could then be

tested with a scenario that it hasn’t been exposed to.

17 Reaction time is not an “undisputable” measure of performance because there is evidence that
humans voluntarily influence reaction times as part of a performance strategy called Accuracy-Speed
Tradeoff.
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3. Qualitative Measures

Qualitative measures encompass performance strategies like speed-accuracy
tradeoff in serial tasks or attentional selectivity in dual task situations or “beta shift” in
signal detection theory. More complex measures try to measure the cognitive reasoning
ability, personnel workload assessment and alike. These measure are not easily extracted
from humans, which is one reason why performance psychology is called the science of
the unobservable (Matthews, Davies et a. 2000). However, advancement in cognitive
modeling will also require the validation of covert behavior.
C. AROUSAL, STRESS AND PERFORMANCE

This section describes the correlation between arousal, stress and resulting
performance. We define the arousal level as a physiological level that correlates with the

stress imposed on (external stressors) or within (internal stressors) a person.

Examples for externa stressors, sometimes called external behavior moderatorsis
include: dleep deprivation, dSleep disturbances, physical exercise, heat, cold,
decompression, compression, acceleration and deceleration, weightlessness, vibration,
noise, poor visibility, radiation, drugs and poisons (Poulton 1970). Examples for interna

stressors are : task stress, emotions (i.e., fear or anxiety), obsessiveness.

18 Pew et a. describe stressors as behavior moderators. However, research shows that not every
stressor or level of stressor leadsto a changed behavior.
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Figure7. A Representation of Stress (From: Wickens 1992, Fig. 10.1 p.414)

Figure 7 illustrates the different effects of externa stressors in terms of human
performance. Some stressors have a direct influence on the process. Noise, for example,
influences the quality of the perceived information, especially in auditory tasks. Vibration
can impact the quality of the response. The perceived level of stress is often expressed as
a phenomenological experience. Stressors don’'t always degrade performance (Wickens
1992), instead they can lead to enhanced performance which is well explained with
arousal theory, covered in the next section.
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1. Arousal Theories
a. Yerkes-Dobson Law

Optimal level of arousal \

Good

Simple task

PERFORMANCE

Complex task

Poor i
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LEVEL OF AROUSAL

Figure8.  Yerkes Dobson Law (From: Wickens 1992, Fig. 10.2)

Figure 8 illustrates the Y erkes-Dobson law, which is also described as an
inverted U-function. It basically states that there is an individual level of arousal whichis
optimal for task performance. The optimal level is different for different people and for
some personsit also differs over time. Arousal that is below or above that threshold leads
to degraded (respectively non-optimal) performance. It can easily be seen that causes for
the change in performance can not be easily deduced from these (non-linear) curves,
since the directions!® of arousal change needs to considered.

b. Dynamic Stress Model

There is still no unified theory that could enable prediction of the
stressors effects on performance. A different approach to Yerkes and Dobson is the
dynamic stress model by Hancock. This section briefly describes his theory on how

humans adapt to stress.

19 performance changes around the optimal point can be changed with increasing or decreasing stress
levels
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Figure9. Human Adaptability to Stress (From: Hancock and Warm 1989)

Figure 9 is strongly supports the underlying hypothesis of this research. It
shows the different zones of resource capacity for psychological and physiological
adaptability as afunction of stress.

Hypostress (underload) and hyperstress (overload) comprise areas of
dynamic instability. Starting in the middle, one can explore the effects of stress and a
change of performance according to the zones. The normative zone describes a region
(for most healthy human beings) where the stress input does not cause a compensatory
action to maintain the performance level. The comfort zone is unique for every
individual. It is aregion where first compensatory actions potentially take place. Once the
stress reaches into the psychological zone of maximal adaptability it certainly impacts the
capacity as well as the willingness factor (i.e., cold has a strong influence on motivation
(Palinkas 2000)). Beyond the psychological zone is the physiological zone of
adaptability, which is regulated by body functions such as increase of body temperature.
Being in this zone does not only impact performance but also potentialy impacts one's
hedth.20 This model thus describes the change from a stable state to failure modes and to

20 A rather infamous example for this zone is the heat stroke. Especially in connection with medication
heat stroke can be a cause for death for athletes during spring training for baseball.
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a breakdown. Unfortunately, this cannot be used as predictive model, because smilar to
the inverted U shape of the Yerkes-Dobson law, it can only be established after the fact
(Hancock and Warm 1989).

A cognitive model should generate these areas accordingly to show the
shifts in performance. This research assumes that reduced human performance is like a
complex adaptive system, which seems to be an idea fit to the theory of adaptability
Zones.
D. VIGILANCE PERFORMANCE

1. Background to Studies of Vigilance Perfor mance

Vigilance research started in the early 1930s and was established by Mackworth’s
work on naval recruits. Mackworth was tasked to research the question why so many
enemy submarines that were on the radar screen of radar operators still remained
undetected. He studied the phenomenon of the vigilance decrement in laboratory settings.
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Figure 10. Mackworth’s Clock Experiment and Results

Figure 10 (from Mackworth 1950) shows the results of the Mackworth clock test.
It was used to establish the increase in misses and the increase in reaction time. Subjects
watched a clock’s watch hand for two hours. Whenever the watch hand jumped two
instead of one second the subjects had to report it. Within the first 30 minutes the

decrement in hit rate was most pronounced. After that the decrement leveled of and
50



stayed at an almost constant level (Mackworth 1950).Closely related to the phenomenon
of vigilance is the theory of signal detection:

Signal detection theory has had a large impact on experimenta
psychology, and its concepts are highly applicable to many problems of
human factors as well. Its benefits can be divided into two genera
categories. (1) It provides the ability to compare sensitivity and therefore
the quality of performance between conditions or between operators that
may differ in response bias. (2) By partitioning performance and therefore
performance change into bias and sensitivity components, it provides a
diagnostic tool that recommends different corrective actions depending on
whether a deterioration of performance results from aloss of sensitivity or
ashift in response bias. (Wickens 1992, p.38)

This research utilizes the ease of implementation of the signal detection theory to
generate signals and noise and to measure the resulting performance parameters. Hence it
IS necessary to briefly explain the main points of the theory.
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Figure11. Signa Detection Theory; (From: Davies and Parasuraman 1982)

Figure 11 shows two hypothetical probability density distributions. The left oneis
the noise distribution. The right one is the cumulative noise+signal distribution. Incoming

information can stem from both distributions, however, only the noise+signal distribution
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contains asignal (like ablips on aradar screen opposed to the white noise on the screen).
The decision criterion (beta) is a decision making threshold. If a piece of an information
is perceived to the left of the line, it is perceived as noise, to the other side as a signal.
The detectability (sensitivity) of a piece of information is measured between the
amplitudes of both distributions. A decrease in sensitivity closes the gap between the
distributions and the probability of errors increase. The errors can be differentiated into

commission and omission errors.

Signd Noise
Y es response Hit False Alarm (commission error)
No response Miss (omission error) Correct rejection

Tablel.  The Four Outcomes of Signal Detection Theory (Wickens 1992)

Table 1 shows the four different outcomes between the information presented and
the response. Some experimenters, like Mackworth, only reported the hit rate or the miss
rate. However neither the false alarm rate nor the decision criterion can be deduced from
that. Both rates (hit, false adarm) are important measures in the psychological
understanding of a person’s response. These rates are also used to determi ne the decision
criterion (criterion (beta) and sensitivity (d')).

There are different strategies for signal detection: |.e. aperson’s decision criterion
could be to the right, thus this person would only report a signal if it's beyond their
doubt. The false darm rate would basically become non existent. However, this also
increases the number of misses. If the opposite strategy is used, basically every piece of
information is called a signal. This will create an almost perfect hit rate, but it will also
create a high false aarm rate2l. It is obvious that different personalities have a major
impact on the decision criterion, which is subject to changes over time (Warm 1984;
Methot and Huitema 1998).

2. Vigilance Performance Factors

Vigilance is a subset of human performance. Thus, we expect that the formula for
human performance holds true for vigilance performance. Research in this field clearly

established factors that impact vigilance performance. After we explain some of the

21 False alarms are not agood way to get superior’s attention.
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factors, we will relate them back to the formula and show their non-linear interaction. We
will then expand the human performance formula for vigilance.

Vigilance Factors
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Vigilance Performance
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*Heat and cold

*Time of day

Figure 12.  Vigilance Factors

Figure 12 summarizes the findings of several researchers (Davies and Tune 1970;
Davies and Parasuraman 1982; Warm 1984; Matthews, Davies et al. 2000). It shows the
main factors that influence vigilance performance. It also shows a sample of the different
measures of performance (MOP). There are three main factors that impact vigilance
performance: Task factor, environmental factor and subjective factor. These factors are
determined by their identified variables (i.e. the environmental factor is determined by
the stress level). The next sections explain the variables, indicating their impact on
vigilance performance
a. Task Factor
Experimental vigilance tasks are often performed in laboratories. Thus this
factor can be easily controlled by the experimenter. Task duration, for example, can vary
between only a few minutes to many hours. Parasuraman and Davies suggested a

taxonomy that discriminates vigilance tasks into successive or simultaneous tasks 22,

22 gyccessive tasks are absolute judgment tasks in which observers must maintain a standard in
working memory to compare incoming information against it. Simultaneous tasks are comparative
judgment task, in which the information contains al the features needed to discriminate it.
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Successive tasks are more demanding since they use the working memory intensely (See,
Howe et al. 1995).

Vigilance decrement can be minimized either by sufficient rest pauses or
feedback (called knowledge of results (KR)). Research showed that even false KR can
have a positive effect on vigilance performance (Matthews, Davies et al. 2000).

Signal salience and probability impact vigilance performance (Sawin and
Scerbo 1995). Signal salience (intensity, duration) impacts sensitivity (detectability).
Signal probability has an effect on the decision (response) criterion.

...low overdl levels of detection efficiency are attributable to observers
adopting extremely conservative response criteria that are appropriate to
the low signal probabilities they experience in the majority of sustained
attention tasks. (Matthews, Davies et al. 2000, p.114).

TASK Variables

Practice Signal probability
Rest pauses Signal salience
Task duration | ™“**++..., e
Tasktype |  Tta N\

Vigilance Performance

Incentives
Knowledge
of results

Figure 13. Relationship between Task Variables and Human Performance Factors

Figure 13 graphically relates vigilance research findings to the factors that
influence human performance in general. KR or incentives (like receiving money for the
experiment) have an impact on a person’s willingness to perform well. KR is aso an
environmental setting. The opportunity factor describes the environment in general. In
vigilance research, this environment can be equated to the method of a vigilance
experiment. |.e., signal salience has an impact on the opportunity factor as well as the

capacity factor. Task duration and the use of rest pauses impact the capacity factor.
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b. Environmental Factor

The environmental factor in vigilance research is not equivaent to the
opportunity factor of the human performance formula. It captures the level of stress
caused by the environment onto the subjects. Some of these variables are again controlled
by the researcher. Sleep deprivation impacts human performance in genera. It has a
degrading effect (Belenky 1994) that can, in certain circumstances, be counteracted with
noise (Loeb 1986) or caffeine (Temple, Warm et al. 2000).

ENVIRONMENT Variables

Noise
Stimulation level

Fatigue | e
sleep deprivation .

Heat and cold B

Time of day

Vigilance Performance

Opportunities|

Figure 14. Relationship between Environmental Variables and Human Performance
Factors

Figure 14 shows that the environmental factors impact al three
performance factors. For example, heat has been used as an external stressor for vigilance
tasks. Mackworth showed in one of his experiments, that signal detection increased as
temperature was increased from 70 to 79 degrees Fahrenheit. At temperatures above 88
degrees Fahrenheit vigilance performance degraded (Mackworth 1950). Matthews
concluded from several studies that there is a curvilinear relationship, very similar to the
Y erkes-Dobson law, between heat and vigilance (Matthews, Davies et a. 2000).

Palinkas showed that cold had an impact on motivation before the body
temperature decreased (Palinkas 2000). Looking back to Figure 9, we claim that once the
stress level has exceeded the maximum zone of psychological adaptability, the
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motivation is going to be impacted. Experiments with vibration showed that the capacity
factor isimpacted by this stress type (see Figure 7).

Another example for the influence on capacity is loss of sensory acuity. A
loss of visual acuity occurs when temperature exceeds 122 degrees Fahrenheit
(Matthews, Davies et al. 2000).

C. Subjective Factor

The subjective factor includes personality, response biases and motivation.
Different researchers showed the variance of human performance between individuals.
Examples for this type of research can be found in (Eysenck and Eysenck 1985;
Matthews, Davies et al. 1990; Koelega 1992; Matthews and Holley 1993; Sawin and
Scerbo 1995; Methot and Huitema 1998; Matthews, Davies et a. 2000; Gusev and
Schapkin 2001).

There are many personality theories?3 that try to categorize the difference
in individuals. It is beyond the scope of this research to go into detail of personality
research. However, there seems to be an agreement in personality theory that the
dimension extroversion and introversion is one of the dimensions characterizing
individuals (Matthews 1997; Gusev and Schapkin 2001; Nécka and Szymura 2001;
Schapkin and Gusev 2001).

23 (Boeree, G. (1999) describes about 30 different personality theories.
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Tasks/ Performance Extroverts | Introverts
Dual-task performance ++ -
Memory task involving high response competition ++ --
Short-term memory tasks ++ --
Retrieval from memory ++ --
Processing resources ++ -
Sensory reactivity ++ -
Resistance to distraction ++ -
Detection rate in vigilance tasks -- ++
Perceptual sensitivity -- ++
Difficult problem solving -- ++
Long term memory - ++

Table2. Differences (sample) in Performance Based on Personality Trait
Extroversion
Table 2 describes some of the main differences between extroverts and
introverts adapted from (Matthews, Davies et a. 2000, p.267ff.). “++" indicates that the
trait is superior. For example extroverts outperform introverts in dual task performance
(Eysenck and Eysenck 1985). (Matthews, Davies et a. 1990 ) documented individual
difference in resource availability, which is going to have an impact on our simulation
system. Research in vigilance aso established the superiority of introverts in terms of
detection rate and perceptual sensitivity (Koelega 1992). (Gusev and Schapkin 2001,
Schapkin and Gusev 2001) conducted the latest research in terms of individua
differences in auditory vigilance tasks.
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Figure 15. Relationship between Subjective Variables and Human Performance
Factors

Opportunitieq

Figure 15 shows that personality influences both the capacity factor and
the willingness factor. As documented in Table 2, extroverts tend to have more
processing resources. (Sawin and Scerbo 1995) showed that boredom-prone subjects
have a more distinct vigilance decrement. This correlates with the fact that extraverts do
not perform as well as introverts. Extroverts presumably are more prone to boredom than
introverts (Eysenck and Eysenck 1985).

d. Vigilance Performance Formula

We have described how the different factor variables (task, environment,
subject) impact performance factors (opportunity, capacity, willingness). From that we
can deduce that aformulafor vigilance should include these factor variables.

VigilancePerformance= f(O" C~ W);
O = g(Task, Environment)

C = h(Subject, Task, Environment)

W = k(Subject, Task, Environment)

This equation shows that opportunity is a function of the task (specifically
the method of the task experiment). Capacity and willingness depend on subject, task,
and environment. Since these different factors represent dimensions, a different way of

representing the formula follows:
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This equation shows that vigilance performance is a nonlinear function of
the mentioned factors. From prior description of the impact of these factors, it is evident
that vigilance performance is dynamic and adaptive. Hence we found support for the
hypothesis that vigilance is a complex adaptive system. The next section describes some
of the main theories explaining vigilance performance or more specifically in some cases
the vigilance decrement.

3. Vigilance Theories

Several theories of vigilance tried to explain either the low overal level of
vigilance or the vigilance decrement or both. Our research could potentially be utilized
not only to approximate empirical human vigilance performance data but also to create
feedback to the developed theories. This is what McKelvey called the “model-centric
view of science” (McKelvey 2000).

Theories
Inhibition & Habituation

Expectancy Model Vigilance

Resource
Arousal

1. The theories, model, and phenomena
= A are viewed as independent entities.

priomatic 2. Science is bifurcated into two

independent but not unrelated truth-

testing activities:

(a) experimental adequacy

(b) ontological adequacy

Figure16. Semantic Conception Model Centric View on Vigilance Adapted from
(McKelvey 2000)
Figure 16 shows the feedback between model to the different theories as well as

the feedback from the real phenomenon (Vigilance) back to the model. One of the
59



assumptions of our research is that the model centric view accomplished with a model

composed of a multi-agent system is the “third way of doing science’ as expressed by

researchers like (Axelrod 1997; McKelvey 2000). Thus we will explain these theories

with respect to their impacts on the modeling approach. Therefore, it is imperative that

RHPM has an open flexible architecture, that potentialy alows us to include these

theories even in hybrid forms (i.e. expectancy theory + arousal theory+ resource theory).
a. I nhibition and Habituation

Mackworth regarded the vigilance decrement as analogous to the
extinction of a conditioned response when that response is no longer
reinforced. The decline in detection rate was therefore attributed to the
accumulation of inhibition, a fatigue like construct, which eventually
results in a failure to produce the detection response, usualy a key-press,
when asignal is present (Matthews, Davies et a. 2000, p.117).

A conclusion from his theory is that increased signal probability would
lead to a decreased detection rate, because the inhibition process would lead to a faster

accumulation of fatigue. Experiments showed that this conclusion doesn’t hold.
Detection decrements were found to be inversely related to signal
probability levels across groups. High signal probabilities generated
consistent withingroup and within-subject performance, whereas low
probabilities generated both lower performance and larger within-subject
variance (Methot and Huitema 1998, p.1).

Habituation theory proposed that due to the habituation of neural
responses to nontarget events, the observer becomes progressively less able to
discriminate targets from non-targets, resulting in a sensitivity (d') decrement (Matthews,
Davies et a. 2000). This neura response can be measured with the help of an EEG
recording the cortical evoked potential like the N100. Parasuraman showed that the rate
of habituation in the N100 response was not effected by signal probability (Parasuraman
1998).

Inhibition or habituation theory is mainy concerned with the vigilance
decrement. There is evidence, that these theories do not explain the entire phenomenon.
McKelvey’s view on theories explains why one should not discount the entire theory:

A theory is intended to provide a generalized description of a
phenomenon, say, a firm’s behavior. But no theory ever includes so many
terms and statements that it could effectively accomplish this. A theory:
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1. does not attempt to describe all aspects of the phenomena in its
intended scope; rather it abstracts certain parameters from the phenomena
and attempts to describe the phenomena in terms of just these abstracted

parameters’;
2. assumes that the phenomena behave according to the selected

parameters included in the theory; and

3. istypically specified in terms of its several parameters with the
full knowledge that no empirical study or experiment could successfully
and completely control all the complexities that might affect the
designated parameters—theories are not specified in terms of what might
be experimentally successful (McKelvey 2000,p.15).

The conclusion from these theories for our model are:

The model should provide an opportunity to manipulate the parameters of

the response selection and execution like the response bias beta

The model should provide an opportunity to impact the sensitivity

parameter (d’).

b. Filter Theory

Filter theory states that sustained attention to the same informetion source
is liable to intermittent interruption, because the hypothetical filter is biased towards new

information.

Filter Theory thus attributes the vigilance decrement to periodic failuresto
select task relevant information which become more frequent with time at
work. Filter theory predicts that vigilance tasks in which signals are
present only for a brief period will yield a more pronounced decrement
than tasks in which signals are present for longer periods ... Filter theory
also predicts that the decrement in self-paced vigilance tasks, where
observers work at their own pace, should be less marked than in tasks
where observers work at a rate that is externally exposed (Matthews,
Davieset al. 2000, p.119).

Some experiments support the theory and its conclusions. However, there
is dso evidence against the latter conclusion. Observers tend to increase their own
response rate paralleled with a decrease in detection rate. This implies that observers use

the speed-accuracy tradeoff astheir performance strategy (Matthews, Davies et al. 2000).
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The conclusion from filter theory for our model is that the model needs a
component with a filter function. This component should progressively attend more to
new information sources than to the relevant source seeking novel stimuli

C. Expectancy Theory

Expectancy theory clams that observers keep track of past signa
occurrences in order to predict future ones. This leads to the expectancy of signal
occurrence. (Matthews, Davies et a. 2000).(Davies and Tune 1970; Davies and
Parasuraman 1982) show many experiments that support this theory. However, they also
point out some objections to the theory:

The knowledge of the temporal structure of a vigilance task gained during
one session does not transfer to later sessions. Expectancy theory explains
this by claiming that observers completely forget the temporal structure
between experiments.

Expectancy theory emphasizes the importance of an early accurate
detection level. However, a vigilance decrement occurs even if the early
detection level was aimost perfect. This doesn’'t relate to the fact that the
initial prediction of signal occurrence was accurate. (Davies and Tune
1970, p.205)

They conclude that:

The expectancy hypothesis has provided an ingeni